Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Yanli Wang

Yanli Wang

Shanghai University, China

Title: Mass production of functionalized graphene quantum dots and their application in cancer diagnosis and therapy

Biography

Biography: Yanli Wang

Abstract

Graphene quantum dots (GQDs) have garnered increasing attention because of their various alluring physicochemical properties and a wide range of potential application. However, their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. We established a new mass-productive synthesis method of single-crystalline GQDs via a green and low-cost alkali-mediated hydrothermal molecular fusion using an active PAH molecule as a precursor. Functionalized GQDs featured excellent optical properties, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients, and long-term photo-stability. Positively charged amino-GQDs could easily pass through cell membranes and localize in cell cytoplasm but show acute toxicity in vivo causing death of mice even after tail vein injection at low concentrations. Negatively charged sulfonic-GQDs could not pass through the cell membrane even after co-incubation for 48 hours under normal culture conditions. However, specific targeting of cell nuclei was found when cells were cultured in an ultrathin film with the sulfonic-GQDs.

Both subcutaneous and orthotopic mice tumor models revealed thatthe sulfonic-GQDs showed specific targeting performance for the tumor tissues in vivo. Confocal images of frozen tumor and normal tissue sections further demonstrated the exceptional in vivo cancer-cell-nuclear-targeting capability of the sulfonic-GQDs, which showed no cancer type specificity. Both materials showed good performance for both in vitro and in vivo imaging, however, the toxicity issues of the amino-GQDs may limit their in vivo applications. Negatively charged sulfonic-GQDs showed low toxicity both in vitro and in vivo, which indicates their good potential for clinical applications.