Gustavo Lopez Velazquez
Universidad de Guadalajara, Mexico
Title: Cuantum computation in a solid state diamond C12 with a chain of C13 atoms
Biography
Biography: Gustavo Lopez Velazquez
Abstract
Quantum computation is one of latest hard goal in computer science and technology to perform algorithm that can not be solved during our lifetime by a classical computer. The secret of this powerful machine is based on the exponential parallelism of calculations that it can make due to principle of superposition of the quantum mechanics, where the main elements which give us the information is called qubit (made up of the superposition of two states). However the diculties found to have a workable quantum computer with signicant number of qubits (say, 1000) is looked far away, due to decoherence and technological problems. We are proposing a new solid state quantum computer based on diamond estructure
where one removes a C12 atom (spin zero) and replace it by a C13 atom (spin one half) forming a linear chain of C13 atoms. We show here that this in quantum system we can have an arbitrary single spin rotation of a qubit, a Controlled-Not (CNOT) quantum gate formed with two qubits, and a Controlled-Controlled-Not (CC-NOT) quantum gate with three qubits. This is enought to demonstrate that a full quantum computer can be con- structed with this model. Parameters of the design are
determined by the behavior of these quantum gates.